A Sensorless Speed Estimation For Brushed Dc Motor At

Este trabalho apresenta uma solução para a estimação da velocidade do motor de indução quando é aplicado um controle vetorial sem sensor sensorless, utilizando o filtro estendido de Kalman com um filtro secundário, inovador, que proporciona os valores ótimos das matrizes de covariância e pode trabalhar em forma on-line.

High performance sensorless position control of induction motors (IMs) calls for estimation and control schemes which offer solutions to parameter uncertainties as well as to difficulties involved with accurate flux and velocity estimation at very low and zero speed. In this thesis, novel control and estimation methods have been developed to address these challenges. The proposed estimation algorithms are designed to minimize estimation error in both transient and steady-state over a wide velocity range, including very low and persistent zero speed operation. To this aim, initially single Extended Kalman Filter (EKF) algorithms are designed to estimate the flux, load torque, and velocity, as well as the rotor, Rr’ or stator, Rs resistances. The temperature and frequency related variations of these parameters are well-known challenges in the estimation and control of IMs, and are subject to ongoing research. To further improve estimation and control performance in this thesis, a novel EKF approach is also developed which can achieve the simultaneous estimation of R r’ and Rs for the first time in the sensorless IM control literature. The so-called Switching and Braided EKF algorithms are tested through experiments conducted under challenging parameter variations over a wide speed range, including under persistent operation at zero speed. Finally, in this thesis, a sensorless position control method is also designed using a new sliding mode controller (SMC) with reduced chattering. The results obtained with the proposed control and estimation schemes appear to be very compatible and many times superior to existing literature results for sensorless control of IMs in the very low and zero speed range. The developed estimation and control schemes could also be used with a variety of the sensorless speed and position control applications, which are challenged by a high number of parameter uncertainties.

The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear
control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.

Despite two decades of massive strides in research and development on control strategies and their subsequent implementation, most books on permanent magnet motor drives still focus primarily on motor design, providing only elementary coverage of control and converters. Addressing that gap with information that has largely been disseminated only in journals and at conferences, Permanent Magnet Synchronous and Brushless DC Motor Drives is a long-awaited comprehensive overview of power electronic converters for permanent magnet synchronous machines and control strategies for variable-speed operation. It introduces machines, power devices, inverters, and control, and addresses modeling, implementation, control strategies, and flux weakening operations, as well as parameter sensitivity, and rotor position sensorless control. Suitable for both industrial and academic audiences, this book also covers the simulation, low cost inverter topologies, and commutation torque ripple of PM brushless DC motor drives. Simulation of the motor drives system is illustrated with MATLAB® codes in the text. This book is divided into three parts—fundamentals of PM synchronous and brushless dc machines, power devices, inverters; PM synchronous motor drives, and brushless dc motor drives. With regard to the power electronics associated with these drive systems, the author: Explores use of the standard three-phase bridge inverter for driving the machine, power factor correction, and inverter control Introduces space vector modulation step by step and contrasts with PWM Details dead time effects in the inverter, and its compensation Discusses new power converter topologies being considered for low-cost drive systems in PM brushless DC motor drives This reference is dedicated exclusively to PM ac machines, with a timely emphasis on control and standard, and low-cost converter topologies. Widely used for teaching at the doctoral level and for industrial audiences both in the U.S. and abroad, it will be a welcome addition to any engineer’s library.

The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control design methods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful
Techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.

Technological Developments in Education and Automation includes set of rigorously reviewed world-class manuscripts dealing with the increasing role of technology in daily lives including education and industrial automation. Technological Developments in Education and Automation contains papers presented at the International Conference on Industrial Electronics, Technology & Automation and the International Conference on Engineering Education, Instructional Technology, Assessment, and E-learning which were part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering.

Abstract: The focus of this research is the development of novel techniques for estimation and control of sensorless induction motor drives. In a sensorless drive, the speed must be estimated from the system measurements. Depending on the objective of the control (speed or torque control), the speed estimate must be used in one or more areas of the control scheme. This idea and the main techniques for speed estimation are explored. The dissertation investigates the issues related to low-speed flux estimation when a Voltage Model observer is used. Pure integration cannot be implemented due to offsets in the measured signals and integrators must be replaced by low pass filters. At low speed, the flux estimates are incorrect in both magnitude and angle; consequently, the rotor position obtained by the DFO method is incorrect. An improved Voltage Model observer that corrects the errors is developed based on a Programmable Low Pass Filter and a vector rotator. The method requires estimation of the stator frequency and this is done by a Phase Locked Loop synchronized with the voltage vector. The traditional rotor flux MRAS method can be used for speed estimation, however, under non-ideal integration the dynamics of the speed estimate exhibits right-hand side plane zeros. Additionally, system tuning is difficult and may yield under damped responses. Two novel Sliding Mode MRAS observers are designed and implemented and their features are used for speed estimation. The d-q rotational frame currents of an induction machine are not decoupled. Decoupling can be achieved by canceling the cross-coupled
terms in the equations of the synchronous frame currents. This approach is both inconvenient and inaccurate. A novel approach for decoupling is presented: an Integral Sliding Mode controller complements a traditional controller that acts on a simulated plant. The use of the Integral SM controller guarantees that the currents in the real plant will track those of the simulated model. The additional controller compensates for the cross-terms and for variations of the machine parameters. The method is also valuable for allowing fast and efficient tuning of the current controllers.

This work focuses on speed estimation techniques for sensorless closed-loop speed control of an induction machine based on direct field-oriented control technique. Details of theories behind the algorithms are stated and their performances are verified by the help of simulations and experiments. The field-oriented control as the vector control technique is mainly implemented in two ways: indirect field oriented control and direct field oriented control. The field to be oriented may be rotor, stator, or airgap flux-linkage. In the indirect field-oriented control no flux estimation exists. The angular slip velocity estimation based on the measured or estimated rotor speed is required, to compute the synchronous speed of the motor. In the direct field oriented control the synchronous speed is computed with the aid of a flux estimator. Field Oriented Control is based on projections which transform a three phase time and speed dependent system into a two co-ordinate time invariant system. These projections lead to a structure similar to that of a DC machine control. The flux observer used has an adaptive structure which makes use of both the voltage model and the current model of the machine. The rotor speed is estimated via Kalman filter technique which has a recursive state estimation feature. The flux angle estimated by flux observer is processed taking the angular slip velocity into account for speed estimation. For closed-loop speed control of system, torque, flux and speed producing control loops are tuned by the help of PI regulators. The performance of the closed-loop speed control is investigated by simulations and experiments.

TMS320F2812 DSP controller card and the Embedded Target for the TI C2000 DSP tool of Matlab are utilized for the real-time experiments. Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives. This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control strategies. The book presents a practical computer simulation model of the induction motor that could be used for studying various induction motor drive operations. The control strategies explored include expert-system-based acceleration control, hybrid-fuzzy/PI two-stage control, neural-network-based direct self control, and genetic algorithm based extended Kalman filter for rotor speed estimation. There are also chapters on neural-network-based parameter estimation, genetic-algorithm-based optimized random PWM strategy, and experimental investigations. A chapter is provided as a primer for readers to get started with simulation studies on various AI techniques. Presents major artificial intelligence techniques to induction motor drives Uses a practical simulation approach to get interested readers started on drive development Authored by experienced scientists with over 20 years of experience in the field Provides numerous examples and the latest research results Simulation programs available from the book's Companion Website This book will be invaluable to graduate students and research engineers who specialize in electric motor drives, electric vehicles, and electric ship propulsion. Graduate students in intelligent control, applied electric motion, and energy, as well as engineers in industrial electronics, automation, and electrical transportation, will also find this book helpful. Simulation materials available for download at
ABSTRACT SENSORLESS DIRECT FIELD ORIENTED CONTROL OF INDUCTION MACHINE BY FLUX AND SPEED ESTIMATORS USING MODEL REFERENCE ADAPTIVE SYSTEM

This work focuses on an observer design which will estimate flux-linkage and speed for induction motors in its entire speed control range. The theoretical base of the algorithm is explained in detail and its both open-loop, and closed-loop performance is tested with experiments, measuring only stator current and voltage. Theoretically, the field-oriented control for the induction motor drive can be mainly categorized into two types.

The proceedings covers advanced and multi-disciplinary research on design of smart computing and informatics. The theme of the book broadly focuses on various innovation paradigms in system knowledge, intelligence and sustainability that may be applied to provide realistic solution to varied problems in society, environment and industries. The volume publishes quality work pertaining to the scope of the conference which is extended towards deployment of emerging computational and knowledge transfer approaches, optimizing solutions in varied disciplines of science, technology and healthcare.

High Performance Control of AC Drives with Matlab®/Simulink Explore this indispensable update to a popular graduate text on electric drive techniques and the latest converters used in industry The Second Edition of High Performance Control of AC Drives with Matlab®/Simulink delivers an updated and thorough overview of topics central to the understanding of AC motor drive systems. The book includes new material on medium voltage drives, covering state-of-the-art technologies and challenges in the industrial drive system, as well as their components, and control, current source inverter-based drives, PWM techniques for multilevel inverters, and low switching frequency modulation for voltage source inverters. This book covers three-phase and multiphase (more than three-phase) motor drives including their control and practical problems faced in the field (e.g., adding LC filters in the output of a feeding converter), are considered. The new edition contains links to Matlab®/Simulink models and PowerPoint slides ideal for teaching and understanding the material contained within the book.

Readers will also benefit from the inclusion of: A thorough introduction to high performance drives, including the challenges and requirements for electric drives and medium voltage industrial applications An exploration of mathematical and simulation models of AC machines, including DC motors and squirrel cage induction motors A treatment of pulse width modulation of power electronic DC-AC converter, including the classification of PWM schemes for voltage source and current source inverters Examinations of harmonic injection PWM and field-oriented control of AC machines Voltage source and current source inverter-fed drives and their control Modelling and control of multiphase motor drive system Supported with a companion website hosting online resources. Perfect for senior undergraduate, MSc and PhD students in power electronics and electric drives, High Performance Control of AC Drives with Matlab®/Simulink will also earn a place in the libraries of researchers working in the field of AC motor drives and power electronics engineers in industry.

This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode
techniques and two types of observer–controller schemes based on backstepping and sliding-mode techniques are described. Experimental results validate the performance of these observer and controller configurations with test trajectories of significance in difficult sensorless-AC-machine problems. Control engineers working with AC motors in a variety of industrial environments will find the space-and-cost-saving ideas detailed in Sensorless AC Electric Motor Control of much interest. Academic researchers and graduate students from electrical, mechanical and control-engineering backgrounds will be able to see how advanced theoretical control can be applied in meaningful real systems. Electrical drives lie at the heart of most industrial processes and make a major contribution to the comfort and high quality products we all take for granted. They provide the controller power needed at all levels, from megawatts in cement production to milliwatts in wrist watches. Other examples are legion, from the domestic kitchen to public utilities. The modern electrical drive is a complex item, comprising a controller, a static converter and an electrical motor. Some can be programmed by the user. Some can communicate with other drives. Semiconductor switches have improved, intelligent power modules have been introduced, all of which means that control techniques can be used now that were unimaginable a decade ago. Nor has the motor side stood still: high-energy permanent magnets, semiconductor switched reluctance motors, silicon micromotor technology, and soft magnetic materials produced by powder technology are all revolutionising the industry. But the electric drive is an enabling technology, so the revolution is rippling throughout the whole of industry. Over the past decades, fault diagnosis (FDI) and fault tolerant control strategies (FTC) have been proposed based on different techniques for linear and nonlinear systems. Indeed a considerable attention is deployed in order to cope with diverse damages resulting in faults occurrence. This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives. The volume LNCS 8866 constitutes the refereed proceedings of the 11th International Symposium on Neural Networks, ISNN 2014, held in Hong Kong and Macao, China on November/ December 2014. The 71 revised full papers presented were carefully reviewed and selected from 119 submissions. These papers cover all major topics of the theoretical research, empirical study and applications of neural networks research as follows. The focus is on following topics such as analysis, modeling, and applications. Achieving the goal of green and environmentally friendly energy systems is not possible without the concept of energy storage. Such storage should charge when renewable generation, e.g., photovoltaics and wind farms, is abundant and discharge during periods of its scarcity. Although pumped hydropower plants have been widely used as extremely large capacity energy storage, the recent technological developments in lithium-based batteries have made them economically feasible. The major advantages of batteries over a conventional energy storage system, i.e., hydropower, include its modularity and ease of integration with the transport system. This Special Issue is thus focused on both stationary batteries and mobile batteries in electric vehicles. Both should be used to provide flexibility and balancing services to
power systems. While stationary batteries are focused solely on the power system, the batteries within electric vehicles need to primarily fulfill the task of providing energy for transportation. This is why their use in power systems is secondary. However, due to generally long parking periods, they can become a detrimental asset in terms of balancing the power system.


This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.

This proceedings put together 68 selected articles from the joint conferences of 2014 Congress on Industrial Engineering, Machine Design and Automation (IEMDA2014) and the 2nd Congress on Computer Science and Application (CCSA2014), held in Sanya, China during December 12 - 14, 2014. The conference program of IEMDA 2014 focused on areas of Industrial Engineering, Machine Design and Automation, while the CCSA 2014 program provided the platform for Computer Science and Applications. Collected together the latest research results and applications on industrial engineering, machine design, automation, and computer science and other related Engineering topics. All submitted papers to this proceedings were subjected to strict peer-reviewing by 2-4 expert referees, to ensure that all articles selected are of highest standard and are relevance to the conference.

The two-volume set LNAI 8856 and LNAI 8857 constitutes the proceedings of the 13th Mexican International Conference on Artificial Intelligence, MICAI 2014, held in Tuxtla, Mexico, in November 2014. The total of 87 papers plus 1 invited talk presented in these proceedings were carefully reviewed and selected from 348 submissions. The first volume deals with advances in human-inspired computing and its applications. It contains 44 papers structured into seven sections: natural
language processing, natural language processing applications, opinion mining, sentiment analysis, and social network applications, computer vision, image processing, logic, reasoning, and multi-agent systems, and intelligent tutoring systems. The second volume deals with advances in nature-inspired computation and machine learning and contains also 44 papers structured into eight sections: genetic and evolutionary algorithms, neural networks, machine learning, machine learning applications to audio and text, data mining, fuzzy logic, robotics, planning, and scheduling, and biomedical applications.

This book provides the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible, although a more theoretical control viewpoint is also given. Focusing on the induction motor with, the concepts of stability and nonlinear control theory given in appendices, this book covers: speed sensorless control; design of adaptive observers and parameter estimators; a discussion of nonlinear adaptive controls containing parameter estimation algorithms; and comparative simulations of different control algorithms. The book sets out basic assumptions, structural properties, modelling, state feedback control and estimation algorithms, then moves to more complex output feedback control algorithms, based on stator current measurements, and modelling for speed sensorless control. The induction motor exhibits many typical and unavoidable nonlinear features.

The subject of this book is an important and diverse field of electric machines and drives. The twelve chapters of the book written by renowned authors, both academics and practitioners, cover a large part of the field of electric machines and drives. Various types of electric machines, including three-phase and single-phase induction machines or doubly fed machines, are addressed. Most of the chapters focus on modern control methods of induction-machine drives, such as vector and direct torque control. Among others, the book addresses sensorless control techniques, modulation strategies, parameter identification, artificial intelligence, operation under harsh or failure conditions, and modelling of electric or magnetic quantities in electric machines. Several chapters give an insight into the problem of minimizing losses in electric machines and increasing the overall energy efficiency of electric drives.

This is a reprint in book form of the Energies MDPI Journal Special Issue, entitled “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”. The Special Issue was managed by two Guest Editors from Italy and Norway: Professor Sergio Saponara from the University of Pisa and Professor Lucian MIHET-POPA from Østfold University College, in close cooperation with the Editors from Energies. The papers published in this SI are related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification, and on the evolution from the electric grid to a smart grid. An extensive exploitation
of renewable energy sources is foreseen for the smart grid, as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at the levels of both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) are proposed. Research and technology transfer activities in energy storage systems, such as batteries and super/ultra-capacitors, are essential for the success of electric transportation, and to foster the use of renewable energy sources. Energy storage systems are the key technology to solve these issues, and to increase the adoption of renewable energy sources in the smart grid.

Permanent magnet synchronous motors (PMSM) are used commonly in numerous industrial applications, for instance, in mechatronics, vacuum pumps, energy storage flywheels, automotive, centrifugal compressors, and robotics. Nowadays, the sensorless speed control of PMSM is getting more attention, and several studies are progressing because of its low cost and reliable features. Normally, the speed control methods in PMSM are achieved with the help of sensors for position or speed estimation and control. But, these sensors are easily prone to breakage. Also, the flexibility towards parameter variations is poor in the conventional speed control methods. So, a sensorless T-source inverter-based PMSM drive that integrates the Proportional Integral (PI) controller with an adaptive mechanism to cope with the time-varying system parameters is proposed in this article. A sensorless module, namely, a model reference adaptive system (MRAS), is employed to estimate the rotor position of PMSM based on its performance characteristics. Simulation results are illustrated to investigate the performance of the proposed method with different speeds under no load and loaded conditions. Moreover, the proposed approach not only minimizes the cost and size of the motor but also maximizes the reliability and accuracy.

This volume includes extended and revised versions of a set of selected papers from the International Conference on Electric and Electronics (EEIC 2011), held on June 20-22, 2011, which is jointly organized by Nanchang University, Springer, and IEEE IAS Nanchang Chapter. The objective of EEIC 2011 Volume 4 is to provide a major interdisciplinary forum for the presentation of new approaches from Communication Systems and Information Technology, to foster integration of the latest developments in scientific research. 137 related topic papers were selected into this volume. All the papers were reviewed by 2 program committee members and selected by the volume editor Prof. Ming Ma. We hope every participant can have a good opportunity to exchange their research ideas and results and to discuss the state of the art in the areas of the Communication Systems and Information Technology.

Sensorless speed detection of an induction motor is an attractive area for researchers to enhance the reliability of the system and to reduce the cost of the components. This paper presents a simple method of estimating a rotational speed
by utilizing an artificial neural network (ANN) that would be fed by a set of stator current frequencies that contain some saliency harmonics. This approach allows operators to detect the speed in induction motors such an approach also provides reliability, low cost, and simplicity. First, the proposed method is based on converting the stator current signals to the frequency domain and then applying a tracking algorithm to the stator current spectrum in order to detect frequency peaks. Secondly, the ANN has to be trained by the detected peaks; the training data must be from very precise data to provide an accurate rotor speed. Moreover, the desired output of the training is the speed, which is measured by a tachometer simultaneously with the stator current signal. The databases were collected at many different speeds from two different types of AC induction motors, wound rotor and squirrel cage. They were trained and tested, so when the difference between the desired speed value and the ANN output value reached the wanted accuracy, the system does not need to use the tachometer anymore. Eventually, the experimental results show that in an optimal ANN design, the speed of the wound rotor induction motor was estimated accurately, where the testing average error was 1 RPM. The proposed method has not succeeded to predict the rotor speed of the squirrel cage induction motor precisely, where the smallest testing average error that was achieved was 5 RPM.

This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.

This volume constitutes the refereed proceedings of the 6th Workshop on Engineering Applications, WEA 2019, held in Santa Marta, Colombia, in October 2019. The 62 revised full papers and 2 short papers presented in this volume were carefully reviewed and selected from 178 submissions. The papers are organized in the following topical sections: computer science; computational intelligence; bioengineering; Internet of things; power applications; simulation systems; optimization.

Permanent magnet synchronous (PMS) motors stand at the forefront of electric motor development due to their energy saving capabilities and performance potential. The motors have been developed in response to mounting environmental crises and growing electricity prices, and they have enabled the emergence of motor drive applications like those found in electric and hybrid vehicles, fly by wire, and drones. Control of Permanent Magnet Synchronous Motors is a timely advancement along that path as the first comprehensive, self-contained, and thoroughly up-to-date book devoted solely
to the control of PMS motors. It offers a deep and extended analysis, design, implementation, and performance evaluation of major motor control methods, including Vector, Direct Torque, Predictive, Deadbeat, and Combined Control, in a systematic and coherent manner. All major Sensorless Control and Parameter Estimation methods are also studied. The book places great emphasis on energy saving control schemes.

Sensorless Speed Estimation of an Induction Motor

Copyright: 5976e8a10421ffa65f3bffe7c501a6d4